首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  国内免费   1篇
大气科学   1篇
地球物理   34篇
地质学   52篇
海洋学   6篇
天文学   10篇
综合类   1篇
自然地理   2篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   6篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有106条查询结果,搜索用时 25 毫秒
81.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   
82.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   
83.
We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).  相似文献   
84.
We investigate the behaviour of the asymmetry parameter A as a morphological parameter using a 'volume-limited' sample of 349 galaxies  (distance ≤25 Mpc,  MV ≤−18.5 mag)  and a larger magnitude-limited sample of 707 nearby galaxies. We confirm the correlation of A with morphological type. The late-type galaxies (Sdm, Sm and Im) have larger A than early-type galaxies, and they tend to have larger A than spiral galaxies. We investigate the usefulness of the A versus concentration index C in diagram as a tool for the regular–irregular and early–late classification. The diagram is not very useful to the regular versus late-type irregular classification, as inferred previously, but it is found to be useful to the early–late classification.  相似文献   
85.
Structural, morphological, magnetic, and thermal properties have been investigated for a novel post-perovskite oxide CaPtO3 synthesized under high pressure. By comparing obtained structural parameters with those for known post-perovskite compounds, we argue that the chemical bond has a strong covalent character. Precise measurements of the Langevin susceptibility χ 0 = −9.6 × 10−5 emu/mol and Debye temperature θ ∼ 470 K provide a good opportunity to confirm the reliability of first-principle calculations on predicting physical properties of the Earth’s D” layer.  相似文献   
86.
K-Ar Dating of Fault Gouges from the Red River Fault Zone of Vietnam   总被引:1,自引:0,他引:1  
Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.  相似文献   
87.
The stability and equation of state for the cotunnite phase in TiO2 were investigated up to a pressure of about 70 GPa by high-pressure in situ X-ray diffraction measurements using a laser-heated diamond anvil cell. The transition sequence under high pressure was rutile → α-PbO2 phase → baddeleyite phase → OI phase → cotunnite phase with increasing pressure. The cotunnite phase was the most stable phase at pressures from 40 GPa to at least 70 GPa. The equation of state parameters for the cotunnite phase were established on the platinum scale using the volume data at pressures of 37–68 GPa after laser annealing, in which the St value, an indicator of the magnitude of the uniaxial stress component in the samples, indicates that these measurements were performed under quasi-hydrostatic conditions. The third-order Birch-Murnaghan equation of state at K 0′ = 4.25 yields V 0 = 15.14(5) cm3/mol and K 0 = 294(9), and the second-order Birch-Murnaghan equation of state yields V 0 = 15.11(5) cm3/mol and K 0 = 306(9). Therefore, we conclude that the bulk modulus for the cotunnite phase is not comparable to that of diamond.  相似文献   
88.
 In situ X-ray diffraction experiments of calcium ferrite-type MgAl2O4 have been carried out using a diamond anvil cell combined with synchrotron radiation and an imaging plate X-ray detector under hydrostatic pressures up to 9 GPa. The observed unit-cell volumes at various pressures were fitted to the Birch-Murnaghan equation of state, yielding a bulk modulus of K T 0= 241(3) GPa when K T 0=4 is assumed. This relatively large bulk modulus of calcium ferrite-type MgAl2O4 is consistent with that expected from the systematic relation between bulk modulus and molar volume for the most compounds possessing fcc oxygen packing. Received March 5, 1996/Revised, accepted October 15, 1996  相似文献   
89.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   
90.
Thermal experiment on the pumice at atmospheric pressure shows that welding begins at about 900° C and complete melting occurs at 1350° C. It is noticed that FeO content of pumice decreases first with increasing temperature, attaining minimum value at 1100° C, and then again increases with increasing temperature. Therefore, an equilibrium is expected in the presence of liquid phase as follows:
$$4FeO + O_2 = 2Fe_2 O_3 .$$  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号